class PHPExcel_Best_Fit in Loft Data Grids 6.2
Same name and namespace in other branches
- 7.2 vendor/phpoffice/phpexcel/Classes/PHPExcel/Shared/trend/bestFitClass.php \PHPExcel_Best_Fit
PHPExcel_Best_Fit
@category PHPExcel @package PHPExcel_Shared_Trend @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
Hierarchy
- class \PHPExcel_Best_Fit
Expanded class hierarchy of PHPExcel_Best_Fit
File
- vendor/
phpoffice/ phpexcel/ Classes/ PHPExcel/ Shared/ trend/ bestFitClass.php, line 36
View source
class PHPExcel_Best_Fit {
/**
* Indicator flag for a calculation error
*
* @var boolean
**/
protected $_error = False;
/**
* Algorithm type to use for best-fit
*
* @var string
**/
protected $_bestFitType = 'undetermined';
/**
* Number of entries in the sets of x- and y-value arrays
*
* @var int
**/
protected $_valueCount = 0;
/**
* X-value dataseries of values
*
* @var float[]
**/
protected $_xValues = array();
/**
* Y-value dataseries of values
*
* @var float[]
**/
protected $_yValues = array();
/**
* Flag indicating whether values should be adjusted to Y=0
*
* @var boolean
**/
protected $_adjustToZero = False;
/**
* Y-value series of best-fit values
*
* @var float[]
**/
protected $_yBestFitValues = array();
protected $_goodnessOfFit = 1;
protected $_stdevOfResiduals = 0;
protected $_covariance = 0;
protected $_correlation = 0;
protected $_SSRegression = 0;
protected $_SSResiduals = 0;
protected $_DFResiduals = 0;
protected $_F = 0;
protected $_slope = 0;
protected $_slopeSE = 0;
protected $_intersect = 0;
protected $_intersectSE = 0;
protected $_Xoffset = 0;
protected $_Yoffset = 0;
public function getError() {
return $this->_error;
}
// function getBestFitType()
public function getBestFitType() {
return $this->_bestFitType;
}
// function getBestFitType()
/**
* Return the Y-Value for a specified value of X
*
* @param float $xValue X-Value
* @return float Y-Value
*/
public function getValueOfYForX($xValue) {
return False;
}
// function getValueOfYForX()
/**
* Return the X-Value for a specified value of Y
*
* @param float $yValue Y-Value
* @return float X-Value
*/
public function getValueOfXForY($yValue) {
return False;
}
// function getValueOfXForY()
/**
* Return the original set of X-Values
*
* @return float[] X-Values
*/
public function getXValues() {
return $this->_xValues;
}
// function getValueOfXForY()
/**
* Return the Equation of the best-fit line
*
* @param int $dp Number of places of decimal precision to display
* @return string
*/
public function getEquation($dp = 0) {
return False;
}
// function getEquation()
/**
* Return the Slope of the line
*
* @param int $dp Number of places of decimal precision to display
* @return string
*/
public function getSlope($dp = 0) {
if ($dp != 0) {
return round($this->_slope, $dp);
}
return $this->_slope;
}
// function getSlope()
/**
* Return the standard error of the Slope
*
* @param int $dp Number of places of decimal precision to display
* @return string
*/
public function getSlopeSE($dp = 0) {
if ($dp != 0) {
return round($this->_slopeSE, $dp);
}
return $this->_slopeSE;
}
// function getSlopeSE()
/**
* Return the Value of X where it intersects Y = 0
*
* @param int $dp Number of places of decimal precision to display
* @return string
*/
public function getIntersect($dp = 0) {
if ($dp != 0) {
return round($this->_intersect, $dp);
}
return $this->_intersect;
}
// function getIntersect()
/**
* Return the standard error of the Intersect
*
* @param int $dp Number of places of decimal precision to display
* @return string
*/
public function getIntersectSE($dp = 0) {
if ($dp != 0) {
return round($this->_intersectSE, $dp);
}
return $this->_intersectSE;
}
// function getIntersectSE()
/**
* Return the goodness of fit for this regression
*
* @param int $dp Number of places of decimal precision to return
* @return float
*/
public function getGoodnessOfFit($dp = 0) {
if ($dp != 0) {
return round($this->_goodnessOfFit, $dp);
}
return $this->_goodnessOfFit;
}
// function getGoodnessOfFit()
public function getGoodnessOfFitPercent($dp = 0) {
if ($dp != 0) {
return round($this->_goodnessOfFit * 100, $dp);
}
return $this->_goodnessOfFit * 100;
}
// function getGoodnessOfFitPercent()
/**
* Return the standard deviation of the residuals for this regression
*
* @param int $dp Number of places of decimal precision to return
* @return float
*/
public function getStdevOfResiduals($dp = 0) {
if ($dp != 0) {
return round($this->_stdevOfResiduals, $dp);
}
return $this->_stdevOfResiduals;
}
// function getStdevOfResiduals()
public function getSSRegression($dp = 0) {
if ($dp != 0) {
return round($this->_SSRegression, $dp);
}
return $this->_SSRegression;
}
// function getSSRegression()
public function getSSResiduals($dp = 0) {
if ($dp != 0) {
return round($this->_SSResiduals, $dp);
}
return $this->_SSResiduals;
}
// function getSSResiduals()
public function getDFResiduals($dp = 0) {
if ($dp != 0) {
return round($this->_DFResiduals, $dp);
}
return $this->_DFResiduals;
}
// function getDFResiduals()
public function getF($dp = 0) {
if ($dp != 0) {
return round($this->_F, $dp);
}
return $this->_F;
}
// function getF()
public function getCovariance($dp = 0) {
if ($dp != 0) {
return round($this->_covariance, $dp);
}
return $this->_covariance;
}
// function getCovariance()
public function getCorrelation($dp = 0) {
if ($dp != 0) {
return round($this->_correlation, $dp);
}
return $this->_correlation;
}
// function getCorrelation()
public function getYBestFitValues() {
return $this->_yBestFitValues;
}
// function getYBestFitValues()
protected function _calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const) {
$SSres = $SScov = $SScor = $SStot = $SSsex = 0.0;
foreach ($this->_xValues as $xKey => $xValue) {
$bestFitY = $this->_yBestFitValues[$xKey] = $this
->getValueOfYForX($xValue);
$SSres += ($this->_yValues[$xKey] - $bestFitY) * ($this->_yValues[$xKey] - $bestFitY);
if ($const) {
$SStot += ($this->_yValues[$xKey] - $meanY) * ($this->_yValues[$xKey] - $meanY);
}
else {
$SStot += $this->_yValues[$xKey] * $this->_yValues[$xKey];
}
$SScov += ($this->_xValues[$xKey] - $meanX) * ($this->_yValues[$xKey] - $meanY);
if ($const) {
$SSsex += ($this->_xValues[$xKey] - $meanX) * ($this->_xValues[$xKey] - $meanX);
}
else {
$SSsex += $this->_xValues[$xKey] * $this->_xValues[$xKey];
}
}
$this->_SSResiduals = $SSres;
$this->_DFResiduals = $this->_valueCount - 1 - $const;
if ($this->_DFResiduals == 0.0) {
$this->_stdevOfResiduals = 0.0;
}
else {
$this->_stdevOfResiduals = sqrt($SSres / $this->_DFResiduals);
}
if ($SStot == 0.0 || $SSres == $SStot) {
$this->_goodnessOfFit = 1;
}
else {
$this->_goodnessOfFit = 1 - $SSres / $SStot;
}
$this->_SSRegression = $this->_goodnessOfFit * $SStot;
$this->_covariance = $SScov / $this->_valueCount;
$this->_correlation = ($this->_valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->_valueCount * $sumX2 - pow($sumX, 2)) * ($this->_valueCount * $sumY2 - pow($sumY, 2)));
$this->_slopeSE = $this->_stdevOfResiduals / sqrt($SSsex);
$this->_intersectSE = $this->_stdevOfResiduals * sqrt(1 / ($this->_valueCount - $sumX * $sumX / $sumX2));
if ($this->_SSResiduals != 0.0) {
if ($this->_DFResiduals == 0.0) {
$this->_F = 0.0;
}
else {
$this->_F = $this->_SSRegression / ($this->_SSResiduals / $this->_DFResiduals);
}
}
else {
if ($this->_DFResiduals == 0.0) {
$this->_F = 0.0;
}
else {
$this->_F = $this->_SSRegression / $this->_DFResiduals;
}
}
}
// function _calculateGoodnessOfFit()
protected function _leastSquareFit($yValues, $xValues, $const) {
// calculate sums
$x_sum = array_sum($xValues);
$y_sum = array_sum($yValues);
$meanX = $x_sum / $this->_valueCount;
$meanY = $y_sum / $this->_valueCount;
$mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0;
for ($i = 0; $i < $this->_valueCount; ++$i) {
$xy_sum += $xValues[$i] * $yValues[$i];
$xx_sum += $xValues[$i] * $xValues[$i];
$yy_sum += $yValues[$i] * $yValues[$i];
if ($const) {
$mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY);
$mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX);
}
else {
$mBase += $xValues[$i] * $yValues[$i];
$mDivisor += $xValues[$i] * $xValues[$i];
}
}
// calculate slope
// $this->_slope = (($this->_valueCount * $xy_sum) - ($x_sum * $y_sum)) / (($this->_valueCount * $xx_sum) - ($x_sum * $x_sum));
$this->_slope = $mBase / $mDivisor;
// calculate intersect
// $this->_intersect = ($y_sum - ($this->_slope * $x_sum)) / $this->_valueCount;
if ($const) {
$this->_intersect = $meanY - $this->_slope * $meanX;
}
else {
$this->_intersect = 0;
}
$this
->_calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum, $meanX, $meanY, $const);
}
// function _leastSquareFit()
/**
* Define the regression
*
* @param float[] $yValues The set of Y-values for this regression
* @param float[] $xValues The set of X-values for this regression
* @param boolean $const
*/
function __construct($yValues, $xValues = array(), $const = True) {
// Calculate number of points
$nY = count($yValues);
$nX = count($xValues);
// Define X Values if necessary
if ($nX == 0) {
$xValues = range(1, $nY);
$nX = $nY;
}
elseif ($nY != $nX) {
// Ensure both arrays of points are the same size
$this->_error = True;
return False;
}
$this->_valueCount = $nY;
$this->_xValues = $xValues;
$this->_yValues = $yValues;
}
}
Members
Name | Modifiers | Type | Description | Overrides |
---|---|---|---|---|
PHPExcel_Best_Fit:: |
protected | property | * Flag indicating whether values should be adjusted to Y=0 * * * | |
PHPExcel_Best_Fit:: |
protected | property | * Algorithm type to use for best-fit * * * | 5 |
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | * Indicator flag for a calculation error * * * | |
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | * Number of entries in the sets of x- and y-value arrays * * * | |
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | * X-value dataseries of values * * * | |
PHPExcel_Best_Fit:: |
protected | property | * Y-value series of best-fit values * * * | |
PHPExcel_Best_Fit:: |
protected | property | ||
PHPExcel_Best_Fit:: |
protected | property | * Y-value dataseries of values * * * | |
PHPExcel_Best_Fit:: |
public | function | ||
PHPExcel_Best_Fit:: |
public | function | ||
PHPExcel_Best_Fit:: |
public | function | ||
PHPExcel_Best_Fit:: |
public | function | ||
PHPExcel_Best_Fit:: |
public | function | * Return the Equation of the best-fit line * * | 5 |
PHPExcel_Best_Fit:: |
public | function | ||
PHPExcel_Best_Fit:: |
public | function | ||
PHPExcel_Best_Fit:: |
public | function | * Return the goodness of fit for this regression * * | |
PHPExcel_Best_Fit:: |
public | function | ||
PHPExcel_Best_Fit:: |
public | function | * Return the Value of X where it intersects Y = 0 * * | 2 |
PHPExcel_Best_Fit:: |
public | function | * Return the standard error of the Intersect * * | |
PHPExcel_Best_Fit:: |
public | function | * Return the Slope of the line * * | 2 |
PHPExcel_Best_Fit:: |
public | function | * Return the standard error of the Slope * * | |
PHPExcel_Best_Fit:: |
public | function | ||
PHPExcel_Best_Fit:: |
public | function | ||
PHPExcel_Best_Fit:: |
public | function | * Return the standard deviation of the residuals for this regression * * | |
PHPExcel_Best_Fit:: |
public | function | * Return the X-Value for a specified value of Y * * | 5 |
PHPExcel_Best_Fit:: |
public | function | * Return the Y-Value for a specified value of X * * | 5 |
PHPExcel_Best_Fit:: |
public | function | * Return the original set of X-Values * * | |
PHPExcel_Best_Fit:: |
public | function | ||
PHPExcel_Best_Fit:: |
protected | function | ||
PHPExcel_Best_Fit:: |
protected | function | ||
PHPExcel_Best_Fit:: |
function | * Define the regression * * | 5 |