public static function trendClass::calculate in Loft Data Grids 6.2
Same name and namespace in other branches
- 7.2 vendor/phpoffice/phpexcel/Classes/PHPExcel/Shared/trend/trendClass.php \trendClass::calculate()
11 calls to trendClass::calculate()
- PHPExcel_Calculation_Statistical::CORREL in vendor/
phpoffice/ phpexcel/ Classes/ PHPExcel/ Calculation/ Statistical.php - * CORREL * * Returns covariance, the average of the products of deviations for each data point pair. * *
- PHPExcel_Calculation_Statistical::COVAR in vendor/
phpoffice/ phpexcel/ Classes/ PHPExcel/ Calculation/ Statistical.php - * COVAR * * Returns covariance, the average of the products of deviations for each data point pair. * *
- PHPExcel_Calculation_Statistical::FORECAST in vendor/
phpoffice/ phpexcel/ Classes/ PHPExcel/ Calculation/ Statistical.php - * FORECAST * * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value. * *
- PHPExcel_Calculation_Statistical::GROWTH in vendor/
phpoffice/ phpexcel/ Classes/ PHPExcel/ Calculation/ Statistical.php - * GROWTH * * Returns values along a predicted emponential trend * *
- PHPExcel_Calculation_Statistical::INTERCEPT in vendor/
phpoffice/ phpexcel/ Classes/ PHPExcel/ Calculation/ Statistical.php - * INTERCEPT * * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values. * *
File
- vendor/
phpoffice/ phpexcel/ Classes/ PHPExcel/ Shared/ trend/ trendClass.php, line 87
Class
- trendClass
- PHPExcel_trendClass
Code
public static function calculate($trendType = self::TREND_BEST_FIT, $yValues, $xValues = array(), $const = True) {
// Calculate number of points in each dataset
$nY = count($yValues);
$nX = count($xValues);
// Define X Values if necessary
if ($nX == 0) {
$xValues = range(1, $nY);
$nX = $nY;
}
elseif ($nY != $nX) {
// Ensure both arrays of points are the same size
trigger_error("trend(): Number of elements in coordinate arrays do not match.", E_USER_ERROR);
}
$key = md5($trendType . $const . serialize($yValues) . serialize($xValues));
// Determine which trend method has been requested
switch ($trendType) {
// Instantiate and return the class for the requested trend method
case self::TREND_LINEAR:
case self::TREND_LOGARITHMIC:
case self::TREND_EXPONENTIAL:
case self::TREND_POWER:
if (!isset(self::$_trendCache[$key])) {
$className = 'PHPExcel_' . $trendType . '_Best_Fit';
self::$_trendCache[$key] = new $className($yValues, $xValues, $const);
}
return self::$_trendCache[$key];
break;
case self::TREND_POLYNOMIAL_2:
case self::TREND_POLYNOMIAL_3:
case self::TREND_POLYNOMIAL_4:
case self::TREND_POLYNOMIAL_5:
case self::TREND_POLYNOMIAL_6:
if (!isset(self::$_trendCache[$key])) {
$order = substr($trendType, -1);
self::$_trendCache[$key] = new PHPExcel_Polynomial_Best_Fit($order, $yValues, $xValues, $const);
}
return self::$_trendCache[$key];
break;
case self::TREND_BEST_FIT:
case self::TREND_BEST_FIT_NO_POLY:
// If the request is to determine the best fit regression, then we test each trend line in turn
// Start by generating an instance of each available trend method
foreach (self::$_trendTypes as $trendMethod) {
$className = 'PHPExcel_' . $trendMethod . 'BestFit';
$bestFit[$trendMethod] = new $className($yValues, $xValues, $const);
$bestFitValue[$trendMethod] = $bestFit[$trendMethod]
->getGoodnessOfFit();
}
if ($trendType != self::TREND_BEST_FIT_NO_POLY) {
foreach (self::$_trendTypePolyOrders as $trendMethod) {
$order = substr($trendMethod, -1);
$bestFit[$trendMethod] = new PHPExcel_Polynomial_Best_Fit($order, $yValues, $xValues, $const);
if ($bestFit[$trendMethod]
->getError()) {
unset($bestFit[$trendMethod]);
}
else {
$bestFitValue[$trendMethod] = $bestFit[$trendMethod]
->getGoodnessOfFit();
}
}
}
// Determine which of our trend lines is the best fit, and then we return the instance of that trend class
arsort($bestFitValue);
$bestFitType = key($bestFitValue);
return $bestFit[$bestFitType];
break;
default:
return false;
}
}