You are here

SingularValueDecomposition.php in Loft Data Grids 6.2

File

vendor/phpoffice/phpexcel/Classes/PHPExcel/Shared/JAMA/SingularValueDecomposition.php
View source
<?php

/**
 *	@package JAMA
 *
 *	For an m-by-n matrix A with m >= n, the singular value decomposition is
 *	an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
 *	an n-by-n orthogonal matrix V so that A = U*S*V'.
 *
 *	The singular values, sigma[$k] = S[$k][$k], are ordered so that
 *	sigma[0] >= sigma[1] >= ... >= sigma[n-1].
 *
 *	The singular value decompostion always exists, so the constructor will
 *	never fail.  The matrix condition number and the effective numerical
 *	rank can be computed from this decomposition.
 *
 *	@author  Paul Meagher
 *	@license PHP v3.0
 *	@version 1.1
 */
class SingularValueDecomposition {

  /**
   *	Internal storage of U.
   *	@var array
   */
  private $U = array();

  /**
   *	Internal storage of V.
   *	@var array
   */
  private $V = array();

  /**
   *	Internal storage of singular values.
   *	@var array
   */
  private $s = array();

  /**
   *	Row dimension.
   *	@var int
   */
  private $m;

  /**
   *	Column dimension.
   *	@var int
   */
  private $n;

  /**
   *	Construct the singular value decomposition
   *
   *	Derived from LINPACK code.
   *
   *	@param $A Rectangular matrix
   *	@return Structure to access U, S and V.
   */
  public function __construct($Arg) {

    // Initialize.
    $A = $Arg
      ->getArrayCopy();
    $this->m = $Arg
      ->getRowDimension();
    $this->n = $Arg
      ->getColumnDimension();
    $nu = min($this->m, $this->n);
    $e = array();
    $work = array();
    $wantu = true;
    $wantv = true;
    $nct = min($this->m - 1, $this->n);
    $nrt = max(0, min($this->n - 2, $this->m));

    // Reduce A to bidiagonal form, storing the diagonal elements
    // in s and the super-diagonal elements in e.
    for ($k = 0; $k < max($nct, $nrt); ++$k) {
      if ($k < $nct) {

        // Compute the transformation for the k-th column and
        // place the k-th diagonal in s[$k].
        // Compute 2-norm of k-th column without under/overflow.
        $this->s[$k] = 0;
        for ($i = $k; $i < $this->m; ++$i) {
          $this->s[$k] = hypo($this->s[$k], $A[$i][$k]);
        }
        if ($this->s[$k] != 0.0) {
          if ($A[$k][$k] < 0.0) {
            $this->s[$k] = -$this->s[$k];
          }
          for ($i = $k; $i < $this->m; ++$i) {
            $A[$i][$k] /= $this->s[$k];
          }
          $A[$k][$k] += 1.0;
        }
        $this->s[$k] = -$this->s[$k];
      }
      for ($j = $k + 1; $j < $this->n; ++$j) {
        if ($k < $nct & $this->s[$k] != 0.0) {

          // Apply the transformation.
          $t = 0;
          for ($i = $k; $i < $this->m; ++$i) {
            $t += $A[$i][$k] * $A[$i][$j];
          }
          $t = -$t / $A[$k][$k];
          for ($i = $k; $i < $this->m; ++$i) {
            $A[$i][$j] += $t * $A[$i][$k];
          }

          // Place the k-th row of A into e for the
          // subsequent calculation of the row transformation.
          $e[$j] = $A[$k][$j];
        }
      }
      if ($wantu and $k < $nct) {

        // Place the transformation in U for subsequent back
        // multiplication.
        for ($i = $k; $i < $this->m; ++$i) {
          $this->U[$i][$k] = $A[$i][$k];
        }
      }
      if ($k < $nrt) {

        // Compute the k-th row transformation and place the
        // k-th super-diagonal in e[$k].
        // Compute 2-norm without under/overflow.
        $e[$k] = 0;
        for ($i = $k + 1; $i < $this->n; ++$i) {
          $e[$k] = hypo($e[$k], $e[$i]);
        }
        if ($e[$k] != 0.0) {
          if ($e[$k + 1] < 0.0) {
            $e[$k] = -$e[$k];
          }
          for ($i = $k + 1; $i < $this->n; ++$i) {
            $e[$i] /= $e[$k];
          }
          $e[$k + 1] += 1.0;
        }
        $e[$k] = -$e[$k];
        if ($k + 1 < $this->m and $e[$k] != 0.0) {

          // Apply the transformation.
          for ($i = $k + 1; $i < $this->m; ++$i) {
            $work[$i] = 0.0;
          }
          for ($j = $k + 1; $j < $this->n; ++$j) {
            for ($i = $k + 1; $i < $this->m; ++$i) {
              $work[$i] += $e[$j] * $A[$i][$j];
            }
          }
          for ($j = $k + 1; $j < $this->n; ++$j) {
            $t = -$e[$j] / $e[$k + 1];
            for ($i = $k + 1; $i < $this->m; ++$i) {
              $A[$i][$j] += $t * $work[$i];
            }
          }
        }
        if ($wantv) {

          // Place the transformation in V for subsequent
          // back multiplication.
          for ($i = $k + 1; $i < $this->n; ++$i) {
            $this->V[$i][$k] = $e[$i];
          }
        }
      }
    }

    // Set up the final bidiagonal matrix or order p.
    $p = min($this->n, $this->m + 1);
    if ($nct < $this->n) {
      $this->s[$nct] = $A[$nct][$nct];
    }
    if ($this->m < $p) {
      $this->s[$p - 1] = 0.0;
    }
    if ($nrt + 1 < $p) {
      $e[$nrt] = $A[$nrt][$p - 1];
    }
    $e[$p - 1] = 0.0;

    // If required, generate U.
    if ($wantu) {
      for ($j = $nct; $j < $nu; ++$j) {
        for ($i = 0; $i < $this->m; ++$i) {
          $this->U[$i][$j] = 0.0;
        }
        $this->U[$j][$j] = 1.0;
      }
      for ($k = $nct - 1; $k >= 0; --$k) {
        if ($this->s[$k] != 0.0) {
          for ($j = $k + 1; $j < $nu; ++$j) {
            $t = 0;
            for ($i = $k; $i < $this->m; ++$i) {
              $t += $this->U[$i][$k] * $this->U[$i][$j];
            }
            $t = -$t / $this->U[$k][$k];
            for ($i = $k; $i < $this->m; ++$i) {
              $this->U[$i][$j] += $t * $this->U[$i][$k];
            }
          }
          for ($i = $k; $i < $this->m; ++$i) {
            $this->U[$i][$k] = -$this->U[$i][$k];
          }
          $this->U[$k][$k] = 1.0 + $this->U[$k][$k];
          for ($i = 0; $i < $k - 1; ++$i) {
            $this->U[$i][$k] = 0.0;
          }
        }
        else {
          for ($i = 0; $i < $this->m; ++$i) {
            $this->U[$i][$k] = 0.0;
          }
          $this->U[$k][$k] = 1.0;
        }
      }
    }

    // If required, generate V.
    if ($wantv) {
      for ($k = $this->n - 1; $k >= 0; --$k) {
        if ($k < $nrt and $e[$k] != 0.0) {
          for ($j = $k + 1; $j < $nu; ++$j) {
            $t = 0;
            for ($i = $k + 1; $i < $this->n; ++$i) {
              $t += $this->V[$i][$k] * $this->V[$i][$j];
            }
            $t = -$t / $this->V[$k + 1][$k];
            for ($i = $k + 1; $i < $this->n; ++$i) {
              $this->V[$i][$j] += $t * $this->V[$i][$k];
            }
          }
        }
        for ($i = 0; $i < $this->n; ++$i) {
          $this->V[$i][$k] = 0.0;
        }
        $this->V[$k][$k] = 1.0;
      }
    }

    // Main iteration loop for the singular values.
    $pp = $p - 1;
    $iter = 0;
    $eps = pow(2.0, -52.0);
    while ($p > 0) {

      // Here is where a test for too many iterations would go.
      // This section of the program inspects for negligible
      // elements in the s and e arrays.  On completion the
      // variables kase and k are set as follows:
      // kase = 1  if s(p) and e[k-1] are negligible and k<p
      // kase = 2  if s(k) is negligible and k<p
      // kase = 3  if e[k-1] is negligible, k<p, and
      //           s(k), ..., s(p) are not negligible (qr step).
      // kase = 4  if e(p-1) is negligible (convergence).
      for ($k = $p - 2; $k >= -1; --$k) {
        if ($k == -1) {
          break;
        }
        if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k + 1]))) {
          $e[$k] = 0.0;
          break;
        }
      }
      if ($k == $p - 2) {
        $kase = 4;
      }
      else {
        for ($ks = $p - 1; $ks >= $k; --$ks) {
          if ($ks == $k) {
            break;
          }
          $t = ($ks != $p ? abs($e[$ks]) : 0.0) + ($ks != $k + 1 ? abs($e[$ks - 1]) : 0.0);
          if (abs($this->s[$ks]) <= $eps * $t) {
            $this->s[$ks] = 0.0;
            break;
          }
        }
        if ($ks == $k) {
          $kase = 3;
        }
        else {
          if ($ks == $p - 1) {
            $kase = 1;
          }
          else {
            $kase = 2;
            $k = $ks;
          }
        }
      }
      ++$k;

      // Perform the task indicated by kase.
      switch ($kase) {

        // Deflate negligible s(p).
        case 1:
          $f = $e[$p - 2];
          $e[$p - 2] = 0.0;
          for ($j = $p - 2; $j >= $k; --$j) {
            $t = hypo($this->s[$j], $f);
            $cs = $this->s[$j] / $t;
            $sn = $f / $t;
            $this->s[$j] = $t;
            if ($j != $k) {
              $f = -$sn * $e[$j - 1];
              $e[$j - 1] = $cs * $e[$j - 1];
            }
            if ($wantv) {
              for ($i = 0; $i < $this->n; ++$i) {
                $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p - 1];
                $this->V[$i][$p - 1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p - 1];
                $this->V[$i][$j] = $t;
              }
            }
          }
          break;

        // Split at negligible s(k).
        case 2:
          $f = $e[$k - 1];
          $e[$k - 1] = 0.0;
          for ($j = $k; $j < $p; ++$j) {
            $t = hypo($this->s[$j], $f);
            $cs = $this->s[$j] / $t;
            $sn = $f / $t;
            $this->s[$j] = $t;
            $f = -$sn * $e[$j];
            $e[$j] = $cs * $e[$j];
            if ($wantu) {
              for ($i = 0; $i < $this->m; ++$i) {
                $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k - 1];
                $this->U[$i][$k - 1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k - 1];
                $this->U[$i][$j] = $t;
              }
            }
          }
          break;

        // Perform one qr step.
        case 3:

          // Calculate the shift.
          $scale = max(max(max(max(abs($this->s[$p - 1]), abs($this->s[$p - 2])), abs($e[$p - 2])), abs($this->s[$k])), abs($e[$k]));
          $sp = $this->s[$p - 1] / $scale;
          $spm1 = $this->s[$p - 2] / $scale;
          $epm1 = $e[$p - 2] / $scale;
          $sk = $this->s[$k] / $scale;
          $ek = $e[$k] / $scale;
          $b = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0;
          $c = $sp * $epm1 * ($sp * $epm1);
          $shift = 0.0;
          if ($b != 0.0 || $c != 0.0) {
            $shift = sqrt($b * $b + $c);
            if ($b < 0.0) {
              $shift = -$shift;
            }
            $shift = $c / ($b + $shift);
          }
          $f = ($sk + $sp) * ($sk - $sp) + $shift;
          $g = $sk * $ek;

          // Chase zeros.
          for ($j = $k; $j < $p - 1; ++$j) {
            $t = hypo($f, $g);
            $cs = $f / $t;
            $sn = $g / $t;
            if ($j != $k) {
              $e[$j - 1] = $t;
            }
            $f = $cs * $this->s[$j] + $sn * $e[$j];
            $e[$j] = $cs * $e[$j] - $sn * $this->s[$j];
            $g = $sn * $this->s[$j + 1];
            $this->s[$j + 1] = $cs * $this->s[$j + 1];
            if ($wantv) {
              for ($i = 0; $i < $this->n; ++$i) {
                $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j + 1];
                $this->V[$i][$j + 1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j + 1];
                $this->V[$i][$j] = $t;
              }
            }
            $t = hypo($f, $g);
            $cs = $f / $t;
            $sn = $g / $t;
            $this->s[$j] = $t;
            $f = $cs * $e[$j] + $sn * $this->s[$j + 1];
            $this->s[$j + 1] = -$sn * $e[$j] + $cs * $this->s[$j + 1];
            $g = $sn * $e[$j + 1];
            $e[$j + 1] = $cs * $e[$j + 1];
            if ($wantu && $j < $this->m - 1) {
              for ($i = 0; $i < $this->m; ++$i) {
                $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j + 1];
                $this->U[$i][$j + 1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j + 1];
                $this->U[$i][$j] = $t;
              }
            }
          }
          $e[$p - 2] = $f;
          $iter = $iter + 1;
          break;

        // Convergence.
        case 4:

          // Make the singular values positive.
          if ($this->s[$k] <= 0.0) {
            $this->s[$k] = $this->s[$k] < 0.0 ? -$this->s[$k] : 0.0;
            if ($wantv) {
              for ($i = 0; $i <= $pp; ++$i) {
                $this->V[$i][$k] = -$this->V[$i][$k];
              }
            }
          }

          // Order the singular values.
          while ($k < $pp) {
            if ($this->s[$k] >= $this->s[$k + 1]) {
              break;
            }
            $t = $this->s[$k];
            $this->s[$k] = $this->s[$k + 1];
            $this->s[$k + 1] = $t;
            if ($wantv and $k < $this->n - 1) {
              for ($i = 0; $i < $this->n; ++$i) {
                $t = $this->V[$i][$k + 1];
                $this->V[$i][$k + 1] = $this->V[$i][$k];
                $this->V[$i][$k] = $t;
              }
            }
            if ($wantu and $k < $this->m - 1) {
              for ($i = 0; $i < $this->m; ++$i) {
                $t = $this->U[$i][$k + 1];
                $this->U[$i][$k + 1] = $this->U[$i][$k];
                $this->U[$i][$k] = $t;
              }
            }
            ++$k;
          }
          $iter = 0;
          --$p;
          break;
      }

      // end switch
    }

    // end while
  }

  // end constructor

  /**
   *	Return the left singular vectors
   *
   *	@access public
   *	@return U
   */
  public function getU() {
    return new Matrix($this->U, $this->m, min($this->m + 1, $this->n));
  }

  /**
   *	Return the right singular vectors
   *
   *	@access public
   *	@return V
   */
  public function getV() {
    return new Matrix($this->V);
  }

  /**
   *	Return the one-dimensional array of singular values
   *
   *	@access public
   *	@return diagonal of S.
   */
  public function getSingularValues() {
    return $this->s;
  }

  /**
   *	Return the diagonal matrix of singular values
   *
   *	@access public
   *	@return S
   */
  public function getS() {
    for ($i = 0; $i < $this->n; ++$i) {
      for ($j = 0; $j < $this->n; ++$j) {
        $S[$i][$j] = 0.0;
      }
      $S[$i][$i] = $this->s[$i];
    }
    return new Matrix($S);
  }

  /**
   *	Two norm
   *
   *	@access public
   *	@return max(S)
   */
  public function norm2() {
    return $this->s[0];
  }

  /**
   *	Two norm condition number
   *
   *	@access public
   *	@return max(S)/min(S)
   */
  public function cond() {
    return $this->s[0] / $this->s[min($this->m, $this->n) - 1];
  }

  /**
   *	Effective numerical matrix rank
   *
   *	@access public
   *	@return Number of nonnegligible singular values.
   */
  public function rank() {
    $eps = pow(2.0, -52.0);
    $tol = max($this->m, $this->n) * $this->s[0] * $eps;
    $r = 0;
    for ($i = 0; $i < count($this->s); ++$i) {
      if ($this->s[$i] > $tol) {
        ++$r;
      }
    }
    return $r;
  }

}

//	class SingularValueDecomposition

Classes

Namesort descending Description
SingularValueDecomposition @package JAMA