private function EigenvalueDecomposition::orthes in Loft Data Grids 6.2
Same name and namespace in other branches
- 7.2 vendor/phpoffice/phpexcel/Classes/PHPExcel/Shared/JAMA/EigenvalueDecomposition.php \EigenvalueDecomposition::orthes()
* Nonsymmetric reduction to Hessenberg form. * * This is derived from the Algol procedures orthes and ortran, * by Martin and Wilkinson, Handbook for Auto. Comp., * Vol.ii-Linear Algebra, and the corresponding * Fortran subroutines in EISPACK. * * @access private
1 call to EigenvalueDecomposition::orthes()
- EigenvalueDecomposition::__construct in vendor/
phpoffice/ phpexcel/ Classes/ PHPExcel/ Shared/ JAMA/ EigenvalueDecomposition.php - * Constructor: Check for symmetry, then construct the eigenvalue decomposition * * @access public *
File
- vendor/
phpoffice/ phpexcel/ Classes/ PHPExcel/ Shared/ JAMA/ EigenvalueDecomposition.php, line 291
Class
- EigenvalueDecomposition
- @package JAMA
Code
private function orthes() {
$low = 0;
$high = $this->n - 1;
for ($m = $low + 1; $m <= $high - 1; ++$m) {
// Scale column.
$scale = 0.0;
for ($i = $m; $i <= $high; ++$i) {
$scale = $scale + abs($this->H[$i][$m - 1]);
}
if ($scale != 0.0) {
// Compute Householder transformation.
$h = 0.0;
for ($i = $high; $i >= $m; --$i) {
$this->ort[$i] = $this->H[$i][$m - 1] / $scale;
$h += $this->ort[$i] * $this->ort[$i];
}
$g = sqrt($h);
if ($this->ort[$m] > 0) {
$g *= -1;
}
$h -= $this->ort[$m] * $g;
$this->ort[$m] -= $g;
// Apply Householder similarity transformation
// H = (I -u * u' / h) * H * (I -u * u') / h)
for ($j = $m; $j < $this->n; ++$j) {
$f = 0.0;
for ($i = $high; $i >= $m; --$i) {
$f += $this->ort[$i] * $this->H[$i][$j];
}
$f /= $h;
for ($i = $m; $i <= $high; ++$i) {
$this->H[$i][$j] -= $f * $this->ort[$i];
}
}
for ($i = 0; $i <= $high; ++$i) {
$f = 0.0;
for ($j = $high; $j >= $m; --$j) {
$f += $this->ort[$j] * $this->H[$i][$j];
}
$f = $f / $h;
for ($j = $m; $j <= $high; ++$j) {
$this->H[$i][$j] -= $f * $this->ort[$j];
}
}
$this->ort[$m] = $scale * $this->ort[$m];
$this->H[$m][$m - 1] = $scale * $g;
}
}
// Accumulate transformations (Algol's ortran).
for ($i = 0; $i < $this->n; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$this->V[$i][$j] = $i == $j ? 1.0 : 0.0;
}
}
for ($m = $high - 1; $m >= $low + 1; --$m) {
if ($this->H[$m][$m - 1] != 0.0) {
for ($i = $m + 1; $i <= $high; ++$i) {
$this->ort[$i] = $this->H[$i][$m - 1];
}
for ($j = $m; $j <= $high; ++$j) {
$g = 0.0;
for ($i = $m; $i <= $high; ++$i) {
$g += $this->ort[$i] * $this->V[$i][$j];
}
// Double division avoids possible underflow
$g = $g / $this->ort[$m] / $this->H[$m][$m - 1];
for ($i = $m; $i <= $high; ++$i) {
$this->V[$i][$j] += $g * $this->ort[$i];
}
}
}
}
}